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Abstract

A simple derivation of the Galitskii–Yakimets distribution function over momentum is pre-
sented. For dense plasmas it contains the law ∼p−8 as a quantum correction to the classical
Maxwellian distribution function at large momenta. The integral equation for the width of the
spectral distribution of kinetic Green functions is analyzed. The asymptotic behavior of the quan-
tum corrections to the distribution function of particles is expressed via the Fourier transform
of the wave function in the external potential. It is shown that the asymptotic power law for
the distribution function over momentum is also correct for a non-equilibrium at the external
electrical and laser 9elds. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Distribution function; Green function; Lorentz gas; Self-energy; Density matrix

1. Introduction

In classical statistics the commutativity of kinetic and potential energy operators
leads to the Maxwell distribution function over momentum even for the strong inter-
particle interaction. On account of the e?ect of the quantum uncertainty the distribution
function has a non-maxwellian form and contains a power-law tail [1]. This causes a
non-exponential temperature dependence of the rates of threshold inelastic processes
[2]. In this paper, we show simple ways of quantum corrections to the distribution
function derivation with help of Green function and one-particle density matrix.
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2. Expansion in series of :2

In 1932 E. Wigner, G.E. Uhlenbeck, L. Gropper have calculated quantum corrections
to the classical distribution function over momentum [3]. In calculations they made use
of fact that the distribution function over momenta can be derived by integration of
function I(p; q) over coordinates q.
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As a result of such calculations they have the one-particle distribution function
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that di?ers from the Maxwellian distribution in “e?ective temperature”

Teff = T +
˝2

12miT 2
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@qi

)2〉
: (4)

Angle brackets mean averaging with help of classical Gibbs distribution.

3. Inclusion of quantum degeneracy e�ects

It is possible to obtain the corrected distribution function (3), (4) using the Green
functions method. We will assume that there is no interaction between the particles, they
only interact with heavy almost immobile impurities; N is the number of the impurity
atoms, {Rm} is the totality of their coordinates, U (r) =

∑
m U0(r − Rm) describes the

interaction of the particle of mass m with impurities. This is the so-called Lorentz gas
model [4].
Calculating the half-sum of the equations for the retarded Green function GR we

have
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×GR(r1; t1; r2; t2) = �(r1 − r2)�(t1 − t2) : (5)

In new coordinates �= t1 − t2; T = (t1 + t2)=2; �= r1 − r2; R= (r1 + r2)=2 after the
expansion of U (R±�=2) in the region close to R an equation for the Fourier transform
of the Green function
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will be written as follows:[
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The last two terms in square brackets are the consequence of U (R ± !=2) expansion
in series near R; �p = p2=2m is the kinetic energy.
To 9nd an expansion in terms of ˝2 we have to substitute GR = GR

0 + ˝2GR
1 . After

the separation of di?erent order of ˝ terms
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The distribution function over momentum can be calculated as [1]

f̃(p) =
∫

dE
"

n(E) ImGR : (10)

Here n(E) are the occupation numbers of particles with “energy” E. In the non-
degenerated case n(E)∼ exp(−E=T ). By means of tilde we note that the distribution
function over momentum was found for the certain impurities spatial distribution, i.e.,
U (r) in (5) implies U (r; {Rm}), where {Rm} are coordinates of all impurity atoms.
Therefore, it is necessary to average f̃(pi ; {Rm}) over {Rm}. Under the assumption
that interactions do not a?ect the statistical homogeneity, after all the integrations we
obtain (3), (4), but angle brackets now (and hereinafter) mean the averaging over the
impurities locations. The advantage of this approach is an opportunity to calculate the
corrections not only to the Maxwell distribution function but also to take the particles
quantum identity into account. In this case
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1
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(11)

and
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After the integration over R we will obtain the momentum distribution.
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4. One-particle density matrix approach

Another way of calculating the quantum corrections to the distribution function which
leads to (3), (4) is employing the one particle density matrix
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Di?erentiating (13) with respect to �
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and making change of variables �= r1 − r2; R = (r1 + r2)=2 for the Fourier transform
of the density matrix
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We have an equation
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with the boundary condition != 1 at � = 0. Keeping in mind to 9nd an expansion in
terms of ˝2, solution is seeking in the form of !(p;R)=e−��p−�U (R)&, where &=1+˝2&1
and &1 = 0 at � = 0.
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f̃(p) =
∫

!(p;R) dR : (19)

Since U (r) implies U (r; {Rm}), repeating previous section reasoning, after all integra-
tions we obtain (12) again.
It is possible to show that for electrons interacting with neutral atoms via potential

U (R)∼ − ' e2=R4, where ' is the atom polarizability, the quantum corrections to the
distribution function are important for atoms density na ∼ 3× 1023 cm−3.
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5. Tails of the momentum distribution function

The quantum uncertainty results in that the distribution function over momentum con-
tains a power-law tail. Here we will show the simple way to derive such non-exponential
distribution with help of the one-particle density matrix within the described model. It
is hard to obtain such results using expansion in series of ˝2 [3] for 9xed value of
momentum.
Writing (19) in the explicit form
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In accordance with selected model  i is the solution of the Schroedinger equation
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where U0(p) is the Fourier transform of U0(r). Substituting (26) into (23) and then
averaging over the impurities locations for large values of p we obtain

f(p)∼˝ N
V

|U0(p)|2
�2p

: (27)

Further more, under the assumption that for the short range potential the scattering
amplitude (25) can be represented as a sum of scattering amplitudes of particle in the
presence of single impurity atom F (1)(pi ; p).

f(p)∼˝ N
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∫
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The same result may be expressed via the Fourier transform of the wave function of
particle in the presence of single impurity atom
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As we are interested in studying of a dense media when the impurity atoms locations
can be strongly correlated we can average (23) taking the Boltzman statistics into ac-
count. It leads to the appearance of the additional multiplier in (28) which characterizes
such correlations by means of the correlation function g.
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In (28)–(30) pi ∼
√
2mT�p. From (27) we have for U (r)∼ �(r) at large values of

p f(p)∼˝n=p4—the result of Belyakov [4] , for U (r)∼ 1=r f(p)∼˝n=p8 as was
shown by Galitskii and Yakimets [1], in the relativistic case of a short-range poten-
tial f(p)∼˝n=p6. Because we are looking at the asymptotical form of f(p) at large
momenta it is possible to use Born approximation for the scattering amplitude.
Refusing the assumption about the additivity of the scattering amplitudes it is possible

to write an equations set that gives an opportunity to calculate the multiple scattering
amplitude for the system of short-range potentials [5] numerically.
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Calculated in such way fN is the amplitude of multiple scattering over the N centers.
The distribution function at large values of momenta one can obtain by averaging fN

over the centers locations.

6. Kinetic Green functions method

In general case the generalized distribution function f(E; p) can be obtained with
help of Kadano?–Baym [6], Keldysh diagram technique [2,7]

f(E; p) =−i
n(E)
2"

(GR(E; p)− GA(E; p)) ; (35)

GA(E; p) = (GR(E; p))∗ (36)

and the distribution function over momentum is given by f(p)=
∫
f(E; p) dE (see also

(10)).
In case of low density ideal Fermi gas

f(E; p) = n(E)�(E − �p) : (37)

But for non-ideal gas

f(E; p) = n(E)
1
"

Im1R(E; p)
(E − �p − Re1R(E; p))2 + (Im1R(E; p))2

: (38)

Later on we will denote Im1R(E; p) as 2(E; p) and Re1R(E; p) as P(E; p); 1R is the
retarded self-energy operator.

f(E; p) = n(E)�2(E; p) (39)

�2(E; p) =
1
"

2(E; p)
[E − �p −P(E; p)]2 + 22(E; p)

(40)

The power-law tails in the distribution function over momentum appears by reason of
2 is not equal to zero. The particular form of 2 and P is de9ned by a nature of the
interparticle interactions.
As it was shown in Ref. [8], within the described model an equation for 2 can be

written as

2(E; p) =
"n
˝4

∫
|U (p − p1)|2�2(E; p1)

d3p1

(2")3
(41)

In case of P is not neglected Eq. (41) should be solved consistently with [6]

P(E; p) = P
∫

2(x; p)
x − E

dx + 1HF(!; p) (42)

The principal value of the integral is denoted by means of P.
From (38) under the approximating assumption that �2 can be replaced by the

delta-function in (41) it is possible to obtain (28), (29). The approximation 2(E; p)∼
˝n5t(p)

√
2E=m is more correct than 2∼˝n5m(p)v used in Refs. [2,7,9,10]. Here 5t is

the total scattering cross section, 5m is the momentum transfer cross section.
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Fig. 1. The spectral width 2(E; �p) at the 9xed �p = 25 eV.

In Ref. [8], Eq. (41) was solved numerically for the Debye interaction potential.
Fig. 1 displays the solution of (41) 2(E; �p) for electrons interacting with heavy impu-
rities in media of density n=1021 cm−3 and temperature T =104 K at the 9xed value
of momentum �p = 25 eV.
This solution was used to calculate the thermonuclear fusion rates. As it was shown

in Ref. [2] the generalized expression for the threshold process rate kij is given by

kij = A
∫ ∞

0

∫ ∞

0

∫ +∞

−∞
dE dp dp′|fij(p; p′)|2�2(E; p)n(E; p)

×�2(E ± I; p′)[1− n(E ± I; p′)] : (43)

Here A is the normalization factor which can be found from the condition that (43)
tends to its classical value at 2 → 0; n(E; p) is the generalized population numbers
[7], “+” and “−” correspond to release and absorption of energy I respectively, fij is
the scattering amplitude of the process i → j outside of the mass shell. For the Sun
interior the approximate ratio of the “quantum” and classical rates of fusion reaction
between species i and j is
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Here ! is the total density, Aij=AiAj=(Ai+Aj), Xl is the mass fraction of the background
species, Zi is the state of species j, mp and me are the electron and the proton masses,
respectively. These results are more correct in comparison with those obtained in
Ref. [10,11] with help of simpli9ed expression for 2.
In Ref. [8] the distribution function of electrons in a strong laser 9eld was calculated

with help of such crude estimate of 2. Provided that 2 depends not only on momentum
p but also on E and for the Debye potential its asymptotic form at large values of
p is 2(E; p)∼√

E=�2p we can obtain the tail f(p)∼p−6:5. Really, as it was stayed
in Ref. [9] the generalized populations numbers of electrons in a strong laser 9eld

E = EL exp(−i!Lt) are n(E; p)∼ exp
(
−m!2

LE
2

e2E2
L�p

pq
)
. So the tail is

f(p) ∼
∫

n(E; p)2(E; p)
�2p

dE∼
∫

exp
(
−m!2

LE
2

e2E2
L�p

pq
) √

E
�4p

dE

∼ p(−26+3q)=4 ; (47)

where q is measure of collisions inelasticity, <u=<m ∼pq, <u; num are the energy and
momentum exchange collisions frequencies [8].

7. Conclusions

The simple Lorentz gas model is proposed to calculate the quantum distribution
function over momentum in dense media. The asymptotic form of the distribution
function at large value of momenta is expressed via the scattering amplitude or Fourier
transform of the scattered over the single center particle wave function. A non-linear
integral equation for the width of the generalized distribution function over “energy”
and momentum Lorentz pro9le is presented and simple analytic approximations for
2(E; p) are derived. The inUuence of power-law tails in the distribution function over
momentum on the reaction rates is presented for the nuclear fusion rates in the Sun
interior.
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